Hmdb loader
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-11 18:28:27 UTC
Update Date2023-02-21 17:23:32 UTC
HMDB IDHMDB0033716
Secondary Accession Numbers
  • HMDB33716
Metabolite Identification
Common Name3-Phenylpropanal
Description3-Phenylpropanal, also known as benzenepropanal or benzylacetaldehyde, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 3-Phenylpropanal is a balsam, chocolate, and cinnamon tasting compound. 3-Phenylpropanal is found, on average, in the highest concentration within ceylon cinnamons. 3-Phenylpropanal has also been detected, but not quantified, in several different foods, such as chinese cinnamons, garden tomato (var.), cherry tomato, herbs and spices, and garden tomato.
Structure
Data?1677000212
Synonyms
ValueSource
3-Phenyl-1-propanalChEBI
3-Phenylpropan-1-alChEBI
3-PhenylpropionaldehydeChEBI
3-Phenylpropyl aldehydeChEBI
3-PhenylpropylaldehydeChEBI
BenzenepropanalChEBI
BenzylacetaldehydeChEBI
beta-PhenylpropionaldehydeChEBI
DihydrocinnamaldehydeChEBI
HydrocinnamaldehydeChEBI
Hydrocinnamic aldehydeChEBI
HydrocinnamylaldehydeChEBI
b-PhenylpropionaldehydeGenerator
Β-phenylpropionaldehydeGenerator
3-Phenyl-propionaldehydeChEMBL, HMDB
3-Phenyl-propionaidehydeHMDB
Benzenepropanal, 9ciHMDB
beta -PhenylpropionaldehydeHMDB
FEMA 2887HMDB
Phenyl-propanalHMDB
PhenylpropionaldehydeHMDB
3-PhenylpropanalHMDB
3-PhenylpropanaldehydeHMDB
Chemical FormulaC9H10O
Average Molecular Weight134.1751
Monoisotopic Molecular Weight134.073164942
IUPAC Name3-phenylpropanal
Traditional Namebenzenepropanal
CAS Registry Number104-53-0
SMILES
O=CCCC1=CC=CC=C1
InChI Identifier
InChI=1S/C9H10O/c10-8-4-7-9-5-2-1-3-6-9/h1-3,5-6,8H,4,7H2
InChI KeyYGCZTXZTJXYWCO-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassNot Available
Direct ParentBenzene and substituted derivatives
Alternative Parents
Substituents
  • Monocyclic benzene moiety
  • Alpha-hydrogen aldehyde
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aldehyde
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External DescriptorsNot Available
Ontology
Physiological effect
Disposition
ProcessNot Available
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point47 °CNot Available
Boiling Point97.00 to 98.00 °C. @ 12.00 mm HgThe Good Scents Company Information System
Water Solubility1624 mg/L @ 25 °C (est)The Good Scents Company Information System
LogP1.780 (est)The Good Scents Company Information System
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility0.56 g/LALOGPS
logP2.14ALOGPS
logP1.9ChemAxon
logS-2.4ALOGPS
pKa (Strongest Acidic)17.44ChemAxon
pKa (Strongest Basic)-7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area17.07 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity41.04 m³·mol⁻¹ChemAxon
Polarizability15 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+128.50231661259
DarkChem[M-H]-124.7631661259
DeepCCS[M+H]+128.83130932474
DeepCCS[M-H]-125.72830932474
DeepCCS[M-2H]-162.68330932474
DeepCCS[M+Na]+137.78830932474
AllCCS[M+H]+128.332859911
AllCCS[M+H-H2O]+123.632859911
AllCCS[M+NH4]+132.632859911
AllCCS[M+Na]+133.932859911
AllCCS[M-H]-128.932859911
AllCCS[M+Na-2H]-130.532859911
AllCCS[M+HCOO]-132.332859911

Predicted Retention Times

Underivatized

Chromatographic MethodRetention TimeReference
Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022.5.65 minutes32390414
Predicted by Siyang on May 30, 202214.1041 minutes33406817
Predicted by Siyang using ReTip algorithm on June 8, 20226.8 minutes32390414
Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid1814.1 seconds40023050
Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid519.0 seconds40023050
Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid202.4 seconds40023050
Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid339.1 seconds40023050
RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid307.1 seconds40023050
Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid594.8 seconds40023050
BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid672.8 seconds40023050
HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate)175.7 seconds40023050
UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid1232.1 seconds40023050
BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid493.2 seconds40023050
UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid1290.3 seconds40023050
SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid380.5 seconds40023050
RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid374.4 seconds40023050
MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate501.9 seconds40023050
KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA426.0 seconds40023050
Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water55.5 seconds40023050

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
3-PhenylpropanalO=CCCC1=CC=CC=C11768.6Standard polar33892256
3-PhenylpropanalO=CCCC1=CC=CC=C11093.2Standard non polar33892256
3-PhenylpropanalO=CCCC1=CC=CC=C11168.3Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
3-Phenylpropanal,1TMS,isomer #1C[Si](C)(C)OC=CCC1=CC=CC=C11398.1Semi standard non polar33892256
3-Phenylpropanal,1TMS,isomer #1C[Si](C)(C)OC=CCC1=CC=CC=C11297.5Standard non polar33892256
3-Phenylpropanal,1TBDMS,isomer #1CC(C)(C)[Si](C)(C)OC=CCC1=CC=CC=C11634.8Semi standard non polar33892256
3-Phenylpropanal,1TBDMS,isomer #1CC(C)(C)[Si](C)(C)OC=CCC1=CC=CC=C11548.0Standard non polar33892256
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB011835
KNApSAcK IDNot Available
Chemspider ID7421
KEGG Compound IDNot Available
BioCyc IDCPD-19228
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound7707
PDB ID3PL
ChEBI ID39940
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDrw1010241
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Boymans E, Janssen M, Muller C, Lutz M, Vogt D: Rh-catalyzed linear hydroformylation of styrene. Dalton Trans. 2013 Jan 7;42(1):137-42. doi: 10.1039/c2dt31738a. [PubMed:23104326 ]
  2. Xue X, Yu A, Cai Y, Cheng JP: A computational reinvestigation of the formation of N-alkylpyrroles via intermolecular redox amination. Org Lett. 2011 Nov 18;13(22):6054-7. doi: 10.1021/ol2025247. Epub 2011 Oct 20. [PubMed:22014326 ]
  3. Rocha-Martin J, Vega D, Bolivar JM, Hidalgo A, Berenguer J, Guisan JM, Lopez-Gallego F: Characterization and further stabilization of a new anti-prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. Bioresour Technol. 2012 Jan;103(1):343-50. doi: 10.1016/j.biortech.2011.10.018. Epub 2011 Oct 17. [PubMed:22055107 ]
  4. Zandvoort E, Geertsema EM, Quax WJ, Poelarends GJ: Enhancement of the promiscuous aldolase and dehydration activities of 4-oxalocrotonate tautomerase by protein engineering. Chembiochem. 2012 Jun 18;13(9):1274-7. doi: 10.1002/cbic.201200225. Epub 2012 May 21. [PubMed:22615135 ]
  5. Kasahara H, Jiao Y, Bedgar DL, Kim SJ, Patten AM, Xia ZQ, Davin LB, Lewis NG: Pinus taeda phenylpropenal double-bond reductase: purification, cDNA cloning, heterologous expression in Escherichia coli, and subcellular localization in P. taeda. Phytochemistry. 2006 Aug;67(16):1765-80. Epub 2006 Aug 14. [PubMed:16905164 ]
  6. Vilaplana F, Martinez-Sanz M, Ribes-Greus A, Karlsson S: Emission pattern of semi-volatile organic compounds from recycled styrenic polymers using headspace solid-phase microextraction gas chromatography-mass spectrometry. J Chromatogr A. 2010 Jan 15;1217(3):359-67. doi: 10.1016/j.chroma.2009.11.057. Epub 2009 Nov 20. [PubMed:19963220 ]
  7. Watkins AL, Landis CR: Origin of pressure effects on regioselectivity and enantioselectivity in the rhodium-catalyzed hydroformylation of styrene with (S,S,S)-BisDiazaphos. J Am Chem Soc. 2010 Aug 4;132(30):10306-17. doi: 10.1021/ja909619a. [PubMed:20662513 ]
  8. Agrawal MK, Ghosh PK: Halonium ion-assisted deiodination of styrene-based vicinal iodohydrins followed by rearrangement through phenyl migration. J Org Chem. 2009 Oct 16;74(20):7947-50. doi: 10.1021/jo9013707. [PubMed:19764730 ]
  9. Kjeldmand L, Salazar LT, Laska M: Olfactory sensitivity for sperm-attractant aromatic aldehydes: a comparative study in human subjects and spider monkeys. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Jan;197(1):15-23. doi: 10.1007/s00359-010-0580-y. Epub 2010 Sep 7. [PubMed:20820786 ]
  10. Casey CP, Martins SC, Fagan MA: Reversal of enantioselectivity in the hydroformylation of styrene with [2S,4S-BDPP]Pt(SnCl3)Cl at high temperature arises from a change in the enantioselective-determining step. J Am Chem Soc. 2004 May 5;126(17):5585-92. [PubMed:15113230 ]
  11. Youn B, Kim SJ, Moinuddin SG, Lee C, Bedgar DL, Harper AR, Davin LB, Lewis NG, Kang C: Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970. J Biol Chem. 2006 Dec 29;281(52):40076-88. Epub 2006 Oct 6. [PubMed:17028190 ]
  12. Vukovic N, Sukdolak S, Solujic S, Niciforovic N: Antimicrobial activity of the essential oil obtained from roots and chemical composition of the volatile constituents from the roots, stems, and leaves of Ballota nigra from Serbia. J Med Food. 2009 Apr;12(2):435-41. doi: 10.1089/jmf.2008.0164. [PubMed:19459749 ]
  13. Toogood HS, Fryszkowska A, Hulley M, Sakuma M, Mansell D, Stephens GM, Gardiner JM, Scrutton NS: A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity. Chembiochem. 2011 Mar 21;12(5):738-49. doi: 10.1002/cbic.201000662. Epub 2011 Mar 4. [PubMed:21374779 ]
  14. Lazny R, Nodzewska A, Sienkiewicz M, Wolosewicz K: Strategy for the synthesis of polymeric supports with hydrazone linkers for solid-phase alkylation of ketones and aldehydes. J Comb Chem. 2005 Jan-Feb;7(1):109-16. [PubMed:15638489 ]
  15. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
NADPH-dependent reductase with broad substrate specificity. Catalyzes the reduction of a wide variety of carbonyl compounds including quinones, prostaglandins, menadione, plus various xenobiotics. Catalyzes the reduction of the antitumor anthracyclines doxorubicin and daunorubicin to the cardiotoxic compounds doxorubicinol and daunorubicinol. Can convert prostaglandin E2 to prostaglandin F2-alpha. Can bind glutathione, which explains its higher affinity for glutathione-conjugated substrates. Catalyzes the reduction of S-nitrosoglutathione.
Gene Name:
CBR1
Uniprot ID:
P16152
Molecular weight:
30374.73
Reactions
3-Phenylpropanal → 3-Phenyl-1-propanoldetails