| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Expected but not Quantified |
|---|
| Creation Date | 2012-09-11 17:44:36 UTC |
|---|
| Update Date | 2023-02-21 17:21:05 UTC |
|---|
| HMDB ID | HMDB0031644 |
|---|
| Secondary Accession Numbers | |
|---|
| Metabolite Identification |
|---|
| Common Name | 1,1-Diethoxyethane |
|---|
| Description | 1,1-Diethoxyethane belongs to the class of organic compounds known as acetals. Acetals are compounds having the structure R2C(OR')2 ( R' not Hydrogen) and thus diethers of geminal diols. Originally, the term was confined to derivatives of aldehydes (one R = H), but it now applies equally to derivatives of ketones (neither R = H ). Mixed acetals have different R' groups. 1,1-Diethoxyethane is a sweet, cream, and earthy tasting compound. 1,1-Diethoxyethane has been detected, but not quantified in, several different foods, such as apples (Malus pumila), garden onions (Allium cepa), grape wine, and prickly pears (Opuntia). This could make 1,1-diethoxyethane a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on 1,1-Diethoxyethane. |
|---|
| Structure | InChI=1S/C6H14O2/c1-4-7-6(3)8-5-2/h6H,4-5H2,1-3H3 |
|---|
| Synonyms | | Value | Source |
|---|
| 1, 1-Diethoxyethane | HMDB | | 1,1-Diaethoxy-aethan | HMDB | | 1,1-Diethoxy-ethaan | HMDB | | 1,1-Diethoxy-ethane | HMDB | | 1,1-Diethoxyacetal | HMDB | | 1,1-Dietossietano | HMDB | | Acetaal | HMDB | | Acetal | HMDB | | Acetal (acetaldehyde diethyl acetal) | HMDB | | Acetal diethylique | HMDB | | Acetal homopolymer resin | HMDB | | Acetal resin | HMDB | | Acetaldehyde diethyl acetal | HMDB | | Acetaldehyde ethyl acetal | HMDB | | Acetaldehyde, diethyl acetal | HMDB | | Acetale | HMDB | | Aceton NS | HMDB | | Acetron GP | HMDB | | AT-20GF | HMDB | | cadco Acetal | HMDB | | Capsicum annuum L | HMDB | | CH3CH(OC2H5)2 | HMDB | | Delrin 100 | HMDB | | Delrin 100af, 500af | HMDB | | Delrin 100ST | HMDB | | Delrin 107 | HMDB | | Delrin 150Sa | HMDB | | Delrin 500 | HMDB | | Delrin 500T | HMDB | | Delrin 507 | HMDB | | Delrin 550Sa | HMDB | | Delrin 570 | HMDB | | Delrin 900 | HMDB | | Delrin af blend | HMDB | | Diaethylacetal | HMDB | | Diethoxy-1,1-ethane | HMDB | | Diethoxy-ethane | HMDB | | Diethyl acetal | HMDB | | Diethylacetal | HMDB | | Electrafil J-80/cf/10/tf/10 | HMDB | | Ethane, 1,1-diethoxy-, homopolymer | HMDB | | Ethylidene diethyl ether | HMDB | | Ethylidenediethyl ether | HMDB | | Ethylidine diethyl ether | HMDB | | FEMA 2002 | HMDB | | Polyacetal | HMDB | | Thermocomp KB-1008 | HMDB | | 1,1- Diethoxyethane | MeSH |
|
|---|
| Chemical Formula | C6H14O2 |
|---|
| Average Molecular Weight | 118.1742 |
|---|
| Monoisotopic Molecular Weight | 118.099379692 |
|---|
| IUPAC Name | 1,1-diethoxyethane |
|---|
| Traditional Name | 1,1-diethoxyethane |
|---|
| CAS Registry Number | 105-57-7 |
|---|
| SMILES | CCOC(C)OCC |
|---|
| InChI Identifier | InChI=1S/C6H14O2/c1-4-7-6(3)8-5-2/h6H,4-5H2,1-3H3 |
|---|
| InChI Key | DHKHKXVYLBGOIT-UHFFFAOYSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as acetals. Acetals are compounds having the structure R2C(OR')2 ( R' not Hydrogen) and thus diethers of geminal diols. Originally, the term was confined to derivatives of aldehydes (one R = H), but it now applies equally to derivatives of ketones (neither R = H ). Mixed acetals have different R' groups. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organic oxygen compounds |
|---|
| Class | Organooxygen compounds |
|---|
| Sub Class | Ethers |
|---|
| Direct Parent | Acetals |
|---|
| Alternative Parents | |
|---|
| Substituents | - Acetal
- Hydrocarbon derivative
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Ontology |
|---|
| Physiological effect | |
|---|
| Disposition | |
|---|
| Process | Not Available |
|---|
| Role | |
|---|
| Physical Properties |
|---|
| State | Liquid |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | -100 °C | Not Available | | Boiling Point | 102.00 to 104.00 °C. @ 760.00 mm Hg | The Good Scents Company Information System | | Water Solubility | 44 mg/mL at 25 °C | Not Available | | LogP | 0.84 | Not Available |
|
|---|
| Experimental Chromatographic Properties | Not Available |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. | 3.66 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 14.8187 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 5.09 minutes | 32390414 | | AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid | 32.8 seconds | 40023050 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 1811.5 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 558.6 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 197.8 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 355.5 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 121.2 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 568.1 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 625.3 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 134.2 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 1203.6 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 399.5 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 1296.7 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 403.2 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 339.7 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 475.7 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 524.0 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 50.2 seconds | 40023050 |
Predicted Kovats Retention IndicesUnderivatized |
|---|
| GC-MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane EI-B (Non-derivatized) | splash10-0002-9000000000-a15185ca3da2eb72c9dd | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane EI-B (Non-derivatized) | splash10-006t-9000000000-3b353ea9f033af3d7ad3 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane CI-B (Non-derivatized) | splash10-0002-9400000000-516028f89361714358f7 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane EI-B (Non-derivatized) | splash10-0002-9000000000-6582cb6aae4d8aeab82a | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane EI-B (Non-derivatized) | splash10-0002-9000000000-1f9d4f5641ee98603aa4 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane EI-B (Non-derivatized) | splash10-006t-9100000000-7effe9459ca9da9eed08 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane EI-B (Non-derivatized) | splash10-0002-9000000000-a15185ca3da2eb72c9dd | 2018-05-18 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane EI-B (Non-derivatized) | splash10-006t-9000000000-3b353ea9f033af3d7ad3 | 2018-05-18 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane CI-B (Non-derivatized) | splash10-0002-9400000000-516028f89361714358f7 | 2018-05-18 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane EI-B (Non-derivatized) | splash10-0002-9000000000-6582cb6aae4d8aeab82a | 2018-05-18 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane EI-B (Non-derivatized) | splash10-0002-9000000000-1f9d4f5641ee98603aa4 | 2018-05-18 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - 1,1-Diethoxyethane EI-B (Non-derivatized) | splash10-006t-9100000000-7effe9459ca9da9eed08 | 2018-05-18 | HMDB team, MONA, MassBank | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - 1,1-Diethoxyethane GC-MS (Non-derivatized) - 70eV, Positive | splash10-00fr-9000000000-7a533ffac0916e855eb5 | 2016-09-22 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - 1,1-Diethoxyethane GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 10V, Positive-QTOF | splash10-014i-4900000000-d7c42e9c498c7007c294 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 20V, Positive-QTOF | splash10-00r2-9200000000-1151fc8fea5c70a334d1 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 40V, Positive-QTOF | splash10-002b-9000000000-445a84c0043f25b98c3d | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 10V, Negative-QTOF | splash10-014i-4900000000-5a42c2c1f496d2219a26 | 2016-08-04 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 20V, Negative-QTOF | splash10-014i-9800000000-6c9f047b6866d8a9ae27 | 2016-08-04 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 40V, Negative-QTOF | splash10-006w-9000000000-bce62bdca4639d7f46fb | 2016-08-04 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 10V, Positive-QTOF | splash10-006t-9000000000-5aaa9d672f0bdef6d0b8 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 20V, Positive-QTOF | splash10-00dj-9000000000-35a559d5879fc02b84eb | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 40V, Positive-QTOF | splash10-00dj-9000000000-c9b53242c3f4210a2f3a | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 10V, Negative-QTOF | splash10-05g0-9000000000-c392373f19f1f0fd2663 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 20V, Negative-QTOF | splash10-00di-9000000000-381aa0538e4050537029 | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 1,1-Diethoxyethane 40V, Negative-QTOF | splash10-01ow-9000000000-e757966e0d247425da5e | 2021-09-22 | Wishart Lab | View Spectrum |
NMR Spectra| Spectrum Type | Description | Deposition Date | Source | View |
|---|
| Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-30 | Wishart Lab | View Spectrum |
IR Spectra| Spectrum Type | Description | Deposition Date | Source | View |
|---|
| Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+Na]+) | 2023-02-04 | FELIX lab | View Spectrum |
|
|---|
| General References | - Cortes MB, Moreno JJ, Zea L, Moyano L, Medina M: Response of the aroma fraction in sherry wines subjected to accelerated biological aging. J Agric Food Chem. 1999 Aug;47(8):3297-302. [PubMed:10552649 ]
- Bini R, Chiappe C, Marchetti F, Pampaloni G, Zacchini S: Structures and unusual rearrangements of coordination adducts of MX(5) (M = Nb, Ta; X = F, Cl) with simple diethers. A crystallographic, spectroscopic, and computational study. Inorg Chem. 2010 Jan 4;49(1):339-51. doi: 10.1021/ic9020806. [PubMed:19961145 ]
- Pluth MD, Bergman RG, Raymond KN: The acid hydrolysis mechanism of acetals catalyzed by a supramolecular assembly in basic solution. J Org Chem. 2009 Jan 2;74(1):58-63. doi: 10.1021/jo802131v. [PubMed:19113901 ]
- Perestrelo R, Barros AS, Camara JS, Rocha SM: In-depth search focused on furans, lactones, volatile phenols, and acetals as potential age markers of Madeira wines by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction. J Agric Food Chem. 2011 Apr 13;59(7):3186-204. doi: 10.1021/jf104219t. Epub 2011 Mar 4. [PubMed:21375340 ]
- Caruso R, Scordino M, Traulo P, Gagliano G: Determination of volatile compounds in wine by gas chromatography-flame ionization detection: comparison between the U.S. Environmental Protection Agency 3sigma approach and Hubaux-Vos calculation of detection limits using ordinary and bivariate least squares. J AOAC Int. 2012 Mar-Apr;95(2):459-71. [PubMed:22649934 ]
- Kelly J, Chapman S, Brereton P, Bertrand A, Guillou C, Wittkowski R: Gas chromatographic determination of volatile congeners in spirit drinks: interlaboratory study. J AOAC Int. 1999 Nov-Dec;82(6):1375-88. [PubMed:10589492 ]
- Tsuzuki W, Ue A, Nagao A: Polar organic solvent added to an aqueous solution changes hydrolytic property of lipase. Biosci Biotechnol Biochem. 2003 Aug;67(8):1660-6. [PubMed:12951497 ]
- Shi XY, He KB, Zhang J, Ge YS, Tan JW: [Effects of oxygenated fuels on emissions and carbon composition of fine particles from diesel engine]. Huan Jing Ke Xue. 2009 Jun 15;30(6):1561-6. [PubMed:19662831 ]
- Peinado RA, Moreno JJ, Maestre O, Ortega JM, Medina M, Mauricio JC: Gluconic acid consumption in wines by Schizosaccharomyces pombe and its effect on the concentrations of major volatile compounds and polyols. J Agric Food Chem. 2004 Feb 11;52(3):493-7. [PubMed:14759138 ]
- Peinado RA, Moreno JA, Munoz D, Medina M, Moreno J: Gas chromatographic quantification of major volatile compounds and polyols in wine by direct injection. J Agric Food Chem. 2004 Oct 20;52(21):6389-93. [PubMed:15478997 ]
- El-Zayat WA, El-Sayed WA, Abdel-Rahman AA: Anti-hepatitis B virus activity of new pyrimidine and adenine peptide nucleic acid analogues. Z Naturforsch C. 2009 Jan-Feb;64(1-2):6-10. [PubMed:19323259 ]
- Liu H, Iglesia E: Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures. J Phys Chem B. 2005 Feb 17;109(6):2155-63. [PubMed:16851207 ]
- Ceppatelli M, Fanetti S, Citroni M, Bini R: Photoinduced reactivity of liquid ethanol at high pressure. J Phys Chem B. 2010 Dec 2;114(47):15437-44. doi: 10.1021/jp106516t. Epub 2010 Nov 5. [PubMed:21053928 ]
- Fan W, Qian MC: Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese "Yanghe Daqu" liquors. J Agric Food Chem. 2005 Oct 5;53(20):7931-8. [PubMed:16190652 ]
- Marchetti F, Pampaloni G, Zacchini S: From 1,2-dialkoxyalkanes to 1,4-dioxanes. A transformation mediated by NbCl(5)via multiple C-O bond cleavage at room temperature. Chem Commun (Camb). 2008 Aug 21;(31):3651-3. doi: 10.1039/b804432e. Epub 2008 Jun 9. [PubMed:18665288 ]
- Moyano L, Zea L, Moreno J, Medina M: Analytical study of aromatic series in sherry wines subjected to biological aging. J Agric Food Chem. 2002 Dec 4;50(25):7356-61. [PubMed:12452658 ]
- (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .
|
|---|